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Abstract

The lower approximate natural frequencies of a spinning circular plate are determined for various boundary conditions.

The plate is rotating with constant speed of spin about the axis of symmetry perpendicular to its plane. The boundary

conditions treated here are: clamped, simply supported, free and guided. It is assumed that the normal displacement of the

plate is small and that it does not affect during the oscillation the angular and radial variable stress distribution due to the

rotating of the plate. This divides the problem at hand into two parts, of which the first part determines the radial and

angular variable planar stresses in the plate, while the second part requires the solution of the partial differential equation

with variable coefficients. The approximate lower natural frequencies are determined as functions of the speed of spin and

exhibit in the plates with clamped, guided and simply supported boundary conditions instabilities.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In many engineering systems spinning circular plates appear as components. The fact that flexural
vibrations in rotating discs may cause fractures and may therefore lead to failures of spinning mechanical
systems, their treatment has become of quite some interest. It was found that at certain speeds of rotation such
vibrations become very pronounced and produce repeated cycles of fatigue, resulting in gradual development
of cracks at places where stress concentrations are present. In many engineering systems such transverse
vibrations are induced by oscillatory exterior forces, introducing resonance phenomena, which may lead to
large amplitude transverse oscillations and therefore high stresses. The knowledge of their behaviour must be
understood to enhance a proper design. The following investigation treats transverse vibrations of a circular
plate of uniform thickness, which is rotating about its axis perpendicular to the plane of the disc with constant
angular speed. The spinning plate may exhibit various boundary conditions, of which those of clamped,
guided, simply supported and free boundary shall be investigated. The major difficulty in the treatment arises
from the fact, that due to the spinning of the plate, the centrifugal force is present as a more or less strong
stress of changing magnitude in radial and angular direction, depending on the magnitude of the rotational
spin. Depending on the boundary condition of the spinning plate the plane state of stress exhibits tension and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of circular plate
D stiffness of plate (D ¼ ðEh3=12ð1� n2ÞÞ)
E modulus of elasticity
FmnðlxÞ eigenfunction of non-spinning plate
Fr;Fj specific volume force components in r-

and j-direction, respectively
G shear modulus
h thickness of plate
Im modified Bessel function
Jm Bessel function
k distributed stiffness of translational

springs (force/unit length)
K distributed stiffness of spiral springs

(moment/unit length)
M�

r bending moment
N in-plane force
r; j polar coordinates
t time
T0 tension of membrane
u radial displacement

v angular displacement
Vr Kelvin–Kirchhoff edge reaction
wðr;j; tÞ displacement of plate
lmn eigenvalues of plate according to the

treated boundary condition, m ¼

0; 1; 2; . . . ; n ¼ 1; 2; . . .
n Poisson’s ratio
x ¼ r=a 0pxp1
R mass density of plate
sr; sj radial and azimuthal stress respectively
trj shear stress
F ¼ Na2=D tension–compression parameter

(Fo0: compression, F40: tension)
o natural circular frequency, o� ¼

o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Rha4

q
O0 constant speed of rotation about axis

perpendicular to the plate (centre),
O�0 ¼ O0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Rha4

q
c; ss; g; f represent as superscripts the values for

the boundary conditions clamped, sim-
ply supported, guided or free, respec-
tively
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compression ranges in radial and circumferential direction and may lead to buckling as it is observed for non-
spinning plates with in-plane forces. The problem exhibits partial differential equations with variable
coefficients, for which a closed-form solution is not possible. We therefore have to resort to the Ritz–Galerkin
method, which uses the modal expressions satisfying the boundary conditions at hand of the non-rotating
plate. For small transverse amplitudes we may separate the problem into two parts by assuming the stresses
due to the deflection of the plate sufficiently small (linearised theory) in comparison to the magnitude of
tension or compression in the spinning plate so that the elastic contribution of the stresses do not significantly
change the elasticity behaviour of the plate in oscillation. Therefore two parts of investigations have to be
performed. The first part determines the planar relations of a constantly spinning circular plate with respect to
the applied boundary conditions of the plate and yields the radial and circumferential stresses. Both of them
depend only on the radial coordinate and the square of the rotational speed. The differential equations of the
problem may be combined to one equation in the transverse vibration amplitude with variable coefficients,
which is solved with the Ritz–Galerkin method, yielding after applying the orthogonality relation and the
appropriate eigenfunctions and eigenvalues an infinite system of algebraic equations for the determination of
the natural frequencies as functions of the rotational speed. By truncating the homogeneous algebraic system
to a finite system, the vanishing determinant represents the approximate lower natural frequencies. The
complexity of the procedure is somewhat reduced and simplified by using an auxiliary differential equation
with constant coefficients, thus reducing the order of the partial differential equation, yielding a second-order
partial differential equation. We are able to obtain the lower natural frequency with satisfactory engineering
accuracy.

A few investigations on spinning structural members have been performed previously. For a beam Bauer [1]
has determined the vibration behaviour of a beam spinning about its longitudinal axis for all possible
combinations of free, clamped, simply supported and guided boundaries. The natural frequencies for all these
cases exhibit either (linear with the speed of spin) a decrease or increase. For a beam oriented perpendicular to
the axis of rotation Bauer and Eidel [2] present the fundamental natural frequencies for all possible
combinations of free, clamped, simply supported and guided boundary conditions. They investigated the
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effect of the speed of spin and the hub radius of the beam, which play a pronounced influence upon the natural
frequencies and buckling. Increasing speed of rotation may—depending upon the boundary conditions—
increase or decrease the natural frequency. Increase of the speed of spin leads in some boundary cases, i.e.
clamped–hinged, free–clamped, clamped–guided, guided–clamped, hinged–hinged, hinged–guided, guide-
d–hinged, free–hinged and free–guided to lateral buckling. Here the first boundary condition (left) is that of
the hub, while the second (right) notation is that at the outer end of the beam. It also was noticed that the
magnitude of the hub-ratio b=l (hub radius to the length of the beam) has a pronounced effect on the natural
frequencies, and on instability as well.

The problem at hand, i.e. the vibration of a spinning plate, which became classical, has been treated by
Lamb and Southwell [3] and Southwell [4]. Lamb and Southwell treated the problem of the completely free
circular spinning plate, neglecting the flexural rigidity, and found by assuming a series expansion in r=a an
approximate relation for the natural frequencies as a function of the speed of spin. In Ref. [4], the basic
equation for the plate clamped at the inner boundary and free at the outside has been derived. Lacking these
investigations is the thorough numerical evaluation of those equations, and in particular the investigation of
the behaviour of a spinning plate subject to other boundary conditions. Other investigation such as the
formulation of an approximate method has been given by Prescott [5]. Various other studies on rotating plates
and space boom structures have been performed in Refs. [6–9].

In the last quarter of the past century the investigation of transverse vibrations of spinning plates has drawn
some attention. This interest is mainly based on the relevance of vibrations as they appear in turbine rotors,
circular saws and floppy discs. Barash and Chen [10] solved the problem of a spinning plate, clamped at the inner
radius and free at the outer radius by reducing the fourth-order differential equation of motion to a set of four
first-order equations and solving them by a numerical method. Adams [11] treats the same problem of a clamped
inner and a free outer boundary, assuming also that the in-plane forces of rotation are unaffected by the
transverse motion of the plate. He includes an elastic foundation parameter, which is based on the viscosity of
the air, a case, which is of importance for the operation of floppy discs. Ratios of critical speeds are given
exhibiting the effect of the foundation stiffness and a clamping radius ratio. Since flexible spinning plates are
very sensitive to transverse loadings Cole and Benson [12] present an effective technique for the determination of
the forced response to space fixed point loads by using an eigenfunction expansion. They are able to identify the
modes, which are most important to the response. This was achieved by introducing Green’s functions, which
were computed by numerical integration. In another paper, Shen and Sony [13] investigate the rotating plate
under stationary in-plane and concentrated radial and tangential edge loads, as they may occur in rotating saw
plates under cutting conditions. They detected that edge loads will yield parametric resonance in transversely
excited spinning plates. A perturbation technique was employed by Mignolet et al. [14] to estimate the free
vibration characteristics of an annular spinning plate with the inner boundary being clamped and a free outer
boundary. They mainly present mode shapes. Tutuncu and Durdu [15] determined the buckling for spinning
plates exhibiting polar orthotropy. It was performed for a full plate and for a plate, which was fixed to a rigid
shaft. A recent paper by Nayfeh et al. [16] treated transverse oscillations of a centrally clamped rotating plate of
uniform thickness and spinning with constant angular speed. The periphery is considered free. The authors use
the nonlinear equations, as developed by von Kármán, which were derived for a spinning circular plate by
Nowinski [17], solving the coupled nonlinear equations for the transverse deflection and the stress function. They
also found that the system exhibits at the primary resonance of one of the asymmetric modes a Duffing-type
nonlinear vibration equation, which exhibits for this case a hardening behaviour. The linear case is in good
agreement with the results of other authors.

For eccentrically rotating circular plates Maretic [18] investigates transverse vibrations and stability. For the
first mode the critical angular speed at which instability occurs is determined and shows for increasing
eccentricity a decrease of the critical speed. All papers treat essentially annular spinning plate and represent
the effect of certain system parameters.

2. Planar stress relation of a spinning circular plate

If we assume the oscillatory displacement w of a spinning circular plate of small magnitude, is unaffected by
the stress in the plate, the state of planar tension and compression is predominantly due to the spinning of the
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plate about its axis perpendicular to its plane. For constant thickness h of the plate (Fig. 1) the two-
dimensional equilibrium conditions are given by

qsr

qr
þ

1

r

qtrj

qj
þ

1

r
ðsr � sjÞ þ F r ¼ 0 and

qtrj

qr
þ

1

r

qsj
qj
þ

2

r
trj þ Fj ¼ 0. (1)

In addition we have to observe the stress–strain relation, i.e. the Hook law

�r ¼
qu

qr
¼

1

E
ðsr � nsjÞ; �j ¼

1

r

qv

qj
þ

1

r
u ¼

1

E
ðsj � nsrÞ, (2)

grj ¼
1

r

qu

qj
þ

qv

qr
�

v

r
¼

1

G
trj, (3)

where sr is the radial, sj the angular stress, F r and Fj the specific volume force components and u, v the radial
and angular displacement, respectively. The strains are given by �r and �j, and grj is the angular displacement
due to the shear stress trj, E is Young’s elasticity modulus and G ¼ E=2ð1þ nÞ is the shear modulus, n the
Poisson ratio.

For a spinning plate with O0 as the constant speed of rotation q=qj ¼ 0 and Fj ¼ 0, F r ¼ RO2
0r. This yields

for the above strongly coupled equations (1)–(3) the expressions

r
dsr

dr
þ ðsr � sjÞ þ RO2

0r2 ¼ 0;
dtrj

dr
þ

2

r
trj ¼ 0 (4)

and

E
du

dr
¼ sr � nsj; E

u

r
¼ sj � nsr; Gr

d

dr

v

r

� �
¼ trj. (5)

For a uniformly spinning plate it is trj ¼ v ¼ 0. From Eqs. (3) we obtain

r
dsj
dr
� n

dsr

dr

� �
þ ð1þ nÞðsj � srÞ ¼ 0. (6)
Ω 0 φ

r

0
a

h
(thickness)

Boundary conditions:
- clamped
- simply supported
- free
- guided

E, ρ, ν 

Fig. 1. Geometry of the circular plate.
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The two coupled Euler differential equations (2) and (4) have a solution of the form

sr ¼ A� aO2
0r2; sj ¼ A� bO2

0r2, (7)

where a ¼ Rð3þ nÞ=8 and b ¼ Rð1þ 3nÞ=8. This solution may also be obtained by eliminating sj from Eqs. (4)
and (6), yielding for the radial stress sr the Euler differential equation

r2
d2sr

dr2
þ 3r

dsr

dr
¼ �ð3þ nÞRO2

0r
2, (8)

which exhibits the solution (7). From Eq. (5) we may determine the radial displacement u as

u ¼
1� n

E
r A�

1

8
RO2

0ð1þ nÞr2
� �

. (9)

The magnitude of the integration constant A depends on the boundary conditions of the plate, of which we
distinguish four cases at r ¼ a:

1: Free boundary at r ¼ a : sr ¼ 0, (10)

2: Clamped boundary at r ¼ a : u ¼ 0, (11)

3: Hinged boundary at r ¼ a : u ¼ 0, (12)

4: Guided boundary at r ¼ a : u ¼ 0. (13)

We notice that we have to treat for the planar stress only two cases. Case I (free boundary) renders the
radial and angular stress

sr ¼
1
8
RO2

0ð3þ nÞða2 � r2Þ; sj ¼ 1
8
RO2

0 ð3þ nÞa2 � ð1þ 3nÞr2
� �

, (14)

while case II comprising the attachment cases 2–4 yields

sr ¼
1
8
RO2

0 ð1þ nÞa2 � ð3þ nÞr2
� �

; sj ¼ 1
8
RO2

0 ð1þ nÞa2 � ð1þ 3nÞr2
� �

. (15)

These results have to be included as variable in-plane forces into the equation of the plate.

3. Basic equation of a spinning plate

With the above in-plane stress forces the partial differential equation of a spinning circular plate is given
by [3,4]

D54w�
h

r

q
qr

srr
qw

qr

� �
�

h

r2
sj

q2w
qj2
þ Rh

q2w
qt2
¼ 0, (16)

where the second and third term are the in-plane forces due to the spinning of the plate, R the mass density of
the plate, D ¼ Eh3=12ð1� n2Þ the flexural rigidity, h the thickness of the plate, wðr;j; tÞ the normal
displacement and

52 ¼
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qj2
.

If the stress is larger zero the plate is under tension, while for the stress smaller zero it is under compression.
Introducing the above results (10), (11) and (12) or (13) into Eq. (16) we obtain with

wðr;j; tÞ ¼ eiot
X1ðNÞ
n¼1

X1ðNÞ
m¼0

W mnðrÞ cosmj, (17)
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where o is the yet unknown natural frequency of the plate and m (integer) the angular mode number, the
ordinary differential equation with variable coefficients. It is with x ¼ r=a

Em½W mn; x� ¼
d4W mn

dx4
þ

2

x
d3W mn

dx3
�

2m2 þ 1

x2
d2W mn

dx2
þ

2m2 þ 1

x3
dW mn

dx

�
m2ð4�m2Þ

x4
W mn �

Rha4

D
o2W mn �

hRO2
0a

4

8xD

d

dx
C�x�D�x3
	 
 dW mn

dx

� �

þ
m2hRO2

0a
4

8x2D
C� � E�x2
	 


W mn ¼ 0, ð18Þ

where

C� ¼
ð3þ nÞ for free boundary condition;

ð1þ nÞ for clamped, hinged and guided boundary conditions;

(
(19)

D� ¼ ð3þ nÞ; E� ¼ ð1þ 3nÞ for all four boundary conditions. (20)

For a non-spinning plate, i.e. O0 ¼ 0 the last four terms vanish, and we obtain the well-known differential
equation for the vibrating circular plate. Eq. (18) has to be solved with the considered boundary conditions,
which are either

(a) clamped : W mn ¼ 0 and dW mn

dr
¼ 0 at x ¼ 1;

(b) hinged : W mn ¼ 0 and M�
r ¼ 0 at x ¼ 1;

(c) guided : dW mn

dr
¼ 0 and V�r ¼ 0 at x ¼ 1;

(d) free : M�
r ¼ 0 and V�r ¼ 0 at x ¼ 1;

(e) elastically supported : M�
r � K dW mn

dr
¼ 0 and V�r þ kW mn ¼ 0 at x ¼ 1;

(21)

where K is the distributed spiral spring stiffness, i.e. moment of unit length, opposing the edge rotation, and
where k is the distributed spring stiffness, i.e. the force per unit length opposing the translational motion w in
normal direction. Eq. (21e), not being used in the paper, should indicate that such an elastic supported
boundary could also be treated by the followed method. The above indicated bending moment is

M�
r ¼ �D

d2W mn

dx2
þ

n
x
dW mn

dx
�

nm2

x2
W mn

� �
, (22)

while

V�r ¼ �D
d3W mn

dx3
þ

1

x
d2W mn

dx2
�

1þ ð2� nÞm2

x2
dW mn

dx
þ
ð3� nÞm2

x3
W mn

� �
. (23)

4. Method of solution

The above ordinary differential equations (18) shall be solved by first solving a truncated auxiliary
differential equation [19] that can be solved with the given boundary conditions. This means that the given
original differential equation is truncated to one, rendering an exact solution with the boundary conditions of
the problem. For the spinning plate equation (18) the truncated differential equation consists of the first five
terms yielding a solution l4mnW mn. The original differential equation reads then with o�2 ¼ ðRha4=DÞo2 and
O�20 ¼ ðRha4=DÞO2

0

l4mn � o�2
	 


W mn �
O�20
8
½C� �D�x2�

d2W mn

dx2
�

O�20
8x
½C� � 3D�x2�

dW mn

dx

þ
m2O�20
8x2
ðC� � E�x2ÞW mn ¼ 0, ð24Þ
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in which we have to introduce the appropriate values C�, D� and E� according to the treated boundary
conditions (see Eqs. (19) and (20)). lmn are the eigenvalues of the plate as obtained from the solution

W mnðxÞ ¼ AmnJmðlmnxÞ þ BmnImðlmnxÞ (25)

and the boundary conditions. Assuming the solution of the differential equation as a series expansion in the
eigenfunctions (satisfying the boundary conditions) and applying the Ritz–Galerkin method yields from the
Ritz–Galerkin condition Z 1

0

Em½W mn; x�xFmnðlmnxÞdx ¼ 0; for n ¼ 1; 2; . . . (26)

finally an infinite system of homogeneous algebraic equations, which vanishing coefficient determinant renders
the eigenvalue equation. Truncating this determinant to a finite order yields the approximate values (and
natural frequencies) of the lower eigenvalues.

4.1. Spinning clamped plate

A clamped spinning plate has to satisfy the boundary conditions W mn ¼ 0 and dW mn=dx ¼ 0 at x ¼ 1. The
solution

W mnðxÞ ¼ Amn½Jmðl
ðcÞ
mnxÞImðl

ðcÞ
mnÞ � Jmðl

ðcÞ
mnÞImðl

ðcÞ
mnxÞ� ¼ AmnFmnðl

ðcÞ
mnxÞ (27)

with the eigenvalues lðcÞmn obtained from (n ¼ 1; 2; . . .)

JmðlÞI 0mðlÞ � J 0mðlÞImðlÞ ¼ 0 (28)

satisfies the boundary conditions. The eigenvalues are shown in Table 1. With the Ritz–Galerkin condition
(26) we obtain an infinite set of algebraic equations. It is (see upper scripts in ‘‘Nomenclature’’)Z 1

0

X1
n¼1

Amn l4mn �
Rha4o2

D

� �
xFmnðlxÞFmnðlxÞ

�

�
Rha4l2O2

0

8D
½ð1þ nÞx� ð3þ nÞx3�F 00mnðlxÞF mnðlxÞ
Table 1

l2mn for clamped, guided, simply supported and free plate

nnm 0 1 2 3 Boundary condition

1 10.2158 21.2604 34.8770 51.0300 lðcÞ2mn Clamped

2 39.7711 60.8287 84.5826 111.0214

3 89.1041 120.0792 153.8151 190.3038

4 158.1842 199.0534 242.7206 289.1799

1 0 3.0825 8.7849 16.9020 lðgÞ2mn Guided (n ¼ 0:3)
2 14.6820 28.3988 44.9041 64.1304

3 49.2185 72.8590 99.3610 128.6775

4 103.4995 137.0254 173.4422 212.7161

1 4.9351 13.8982 25.6133 39.9573 lðssÞ2mn Simply supported (n ¼ 0:3)
2 29.7200 48.4789 70.1170 94.5490

3 74.1561 102.7733 134.2978 168.6749

4 138.3181 176.8012 218.2026 262.4847

1 0 0 5.3583 12.4390 lðf Þ2mn Free (n ¼ 0:3)
2 9.0031 20.4746 35.2601 53.0078

3 38.4432 59.8116 84.3662 111.9450

4 87.7502 118.9573 153.3059 190.6918
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�
Rha4lO2

0

8D
½1þ n� 3ð3þ nÞx2�F 0mnðlxÞFmnðlxÞ

þ
m2Rha4O2

0

8D
ð1þ nÞ

1

x
� ð1þ 3nÞx

� �
FmnðlxÞFmnðlxÞ

�
dx ¼ 0

for n ¼ 1; 2; . . . . ð29Þ

This system of equations requires the determination of the following integrals. The orthogonality relation is
with the help of [20,21]

I ð1;0Þmnn ¼

Z 1

0

xFmnðl
ðcÞ
mnxÞF mnðl

ðcÞ
mnxÞdx ¼

J2
mðl
ðcÞ
mnÞI

2
mðl
ðcÞ
mnÞ for n ¼ n;

0 for nan:

(
(30)

while the remaining integrals are for fixed m ¼ 0; 1; 2; . . . and n; n ¼ 1; 2; 3; . . .Z 1

0

xkF ðlÞmnðlmnxÞF mnðlmnxÞdx ¼ I ðk;lÞmnn (31)

with ðk; lÞ ¼ ð1; 2Þ; ð3; 2Þ; ð0; 1Þ; ð2; 1Þ; ð�1; 0Þ are solved numerically. The truncated vanishing determinant (29)
represents with oa2=

ffiffiffiffiffiffiffiffiffiffiffi
D=Rh

p
¼ l2 the approximate lower natural frequencies of the clamped spinning plate.

Introducing the above results (30) and (31) into Eq. (29) yields the determinant for the determination of the
natural frequencies of a spinning clamped plate.

4.2. Spinning guided plate

For a guided plate satisfying the boundary condition dW mn=dx ¼ 0 and V�r ¼ 0 at x ¼ 1, the eigenvalues in
Eq. (27) are to be replaced by lðgÞmn (Table 1) from

2l3J 0mðlÞI
0
mðlÞ �m2ð1� nÞ JmðlÞI 0mðlÞ � J 0mðlÞImðlÞ

� �
¼ 0 (32)

and the solution

F ðgÞmnðl
ðgÞ
mnxÞ ¼ ½Jmðl

ðgÞ
mnxÞI

0
mðl
ðgÞ
mnÞ � J 0mðl

ðgÞ
mnÞImðl

ðgÞ
mnxÞ�. (33)

The orthogonality relation has for n ¼ n the value I ð1;0Þmnn ¼
1
2
½J 02mðlÞI

2
mðlÞ þ I 02mðlÞJ

2
mðlÞ� þ ðm

2=2l2Þ½J 02mðlÞ
I2mðlÞ � I 02mðlÞJ

2
mðlÞ� þ ð1=lÞ½J

02
mðlÞI

0
mðlÞImðlÞ � I 02mðlÞJ

0
mðlÞJmðlÞ� with l ¼ lðgÞmn and zero for nan. The

procedure for the determination of the approximate lower natural frequencies is similar to that of above.

4.3. Spinning simply supported plate

For a simply supported plate we have to satisfy the boundary conditions W mn ¼ 0 and M�
r ¼ 0 at x ¼ 1.

The eigenvalues in Eq. (27) are to be replace by lðssÞmn (Table 1) from

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

ImðlÞ � I 00mðlÞ þ
n
l

I 0mðlÞ
h i

JmðlÞ ¼ 0 (34)

and the solution by

F ðssÞmn ðl
ðssÞ
mn xÞ ¼ ½Jmðl

ðssÞ
mn xÞImðl

ðssÞ
mn Þ � Jmðl

ðssÞ
mn ÞImðl

ðssÞ
mn xÞ�. (35)

The orthogonality relation is I ð1;0Þmnn ¼ ð�1=1� nÞJmðlÞImðlÞfð1þ nÞJmðlÞImðlÞ þ l½J 0mðlÞImðlÞ þ JmðlÞI 0mðlÞ�g
with l ¼ lðssÞmn for n ¼ n and zero for nan.

4.4. Spinning free plate

For a free plate we have to satisfy the boundary conditions M�
r ¼ 0 and V�r ¼ 0 at x ¼ 1. The eigenfunction

is given by

F ðf Þmnðl
ðf Þ
mnxÞ ¼ ½Jmðl

ðf Þ
mnxÞ � wmðl

ðf Þ
mn; nÞImðl

ðf Þ
mnxÞ�, (36)
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where

wmðl; nÞ ¼
ð1� nÞlJ 0mðlÞ þ l2 �m2ð1� nÞ

� �
JmðlÞ

ð1� nÞlI 0mðlÞ � l2 þm2ð1� nÞ
� �

ImðlÞ
.

The eigenvalues in Eq. (27) are to be replaced by lðf Þmn (Table 1) from

fð1� nÞlJ 0mðlÞ þ ½l
2
�m2ð1� nÞ�JmðlÞgfl

3I 0mðlÞ �m2ð1� nÞ½lI 0mðlÞ � ImðlÞ�g

þ fð1� nÞlI 0mðlÞ � ½l
2
þm2ð1� nÞ�ImðlÞgfl

3J 0mðlÞ þm2ð1� nÞ½lJ 0mðlÞ � JmðlÞ�g ¼ 0. ð37Þ

In addition we have to observe the different stress values (14). This would mean that in the second term of Eq.
(29) with F 00 the expression ð1þ nÞ has to be replaced by ð3þ nÞ and in the third term with F 0 the value ð1þ nÞ
has also to be replaced by ð3þ nÞ, while in the last term ð1þ nÞ must also be replaced by ð3þ nÞ. The
orthogonality relation is

I ð1;0Þmnn ¼
1
2

1�
m2

l2

� �
J2

mðlÞ þ
1
2
J 0

2
mðlÞ þ w2m

1
2
1þ m2

l2

 �
I2mðlÞ �

1
2
I 0

2
mðlÞ

h i
�

wm

l ½JmðlÞI 0mðlÞ � ImðlÞJ 0mðlÞ�

with l ¼ lðf Þmn for n ¼ n and zero for nan.
4.5. Special case

We consider here the special case of a fast spinning clamped plate for which the elastic restoring forces are
small in comparison with the centrifugal force. This is represented by neglecting elastic terms (D ¼ 0) of the
plate equation (18), i.e. by omitting the first five terms. The governing differential equation may then be
written as

½ð1þ nÞ � ð3þ nÞx2�
d2W mn

dx2
þ ½ð1þ nÞ � 3ð3þ nÞx2�

1

x
dW mn

dx

�
m2

x2
½ð1þ nÞ � ð1þ 3nÞx2�W mn þ 8

o2

O2
0

W mn ¼ 0. ð38Þ

for the clamped, guided and simply supported plate. For the free plate ð1þ nÞ has to be replaced by ð3þ nÞ. We
obtain with the Ritz–Galerkin condition the system of equations (m fixed integer)

X1
n¼1

Amn l2
Z 1

0

xF 00mnðlmnxÞFmnðlmnxÞdx�
3þ n
ð1þ nÞ

l2
Z 1

0

x3F 00mnðlmnxÞF mnðlmnxÞdx

(

þ l
Z 1

0

F 0mnðlmnxÞFmnðlmnxÞdx�
3ð3þ nÞ
ð1þ nÞ

l
Z 1

0

x2F 0mnðlmnxÞFmnðlmnxÞdx

�m2

Z 1

0

1

x
F mnðlmnxÞFmnðlmnxÞdxþm2 1þ 3n

ð1þ nÞ

Z 1

0

xFmnðlmnxÞFmnðlmnxÞdx

þ
8o2

ð1þ nÞO2
0

Z 1

0

xFmnðlmnxÞFmnðlmnxÞdx

)
¼ 0 for n ¼ 1; 2; . . . ð39Þ

Introducing the appropriate eigenvalues l, the eigenfunctions and the result of the above integrals yields after
truncation to a finite system of homogeneous algebraic equations, of which the vanishing coefficient
determinant shall produce the lower approximate natural frequencies of the spinning clamped, guided or
simply supported plate. For a spinning free plate the values ð1þ nÞ in the above equation has to be replaced by
ð3þ nÞ. In addition the eigenvalues l, eigenfunctions Fmn and the results of the integrals for that case have to
be introduced. In the above equation the second integral has unity as a coefficient, the fourth integral 3 and the
fifth integral m2ð1þ 3nÞ=ð3þ nÞ.
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5. Numerical evaluations and conclusions

The analytically obtained results of above have been evaluated numerically. For the determination of the
planar stress relation two cases appear and were considered. The first case I (10) is valid for the free boundary
(sr ¼ 0 at r ¼ a) and yields the results (14). The stresses sr=RO2

0a
2 (—) and sj=RO2

0a
2 (- - -) are presented in

Fig. 2 and show with increasing radius from the centre a decrease for the radial stress to zero. The
circumferential stress also decreases with the increase of the radius r. The freely spinning plate is totally in a
state of tension. Fig. 3 exhibits the results of case II, which comprises the clamped, hinged and guided
boundary (u ¼ 0 at r ¼ a) (see Eq. (15)). With increasing distance from the centre axis of the plate the stresses
decrease in the lower r=a-region where we observe tension. At about r=a � 0:63 the radial stress vanishes and
shows for r=a40:63 increasing compression in radial direction. The stress in angular direction is larger in
0pr=ao0:83, exhibiting tension and has at r � 0:83a, after which it exhibits a smaller r-region of compression.
All stresses are proportional to the square of the speed of spin. The state of stress is presented in the sketch in
the left corner of the graph.

The lower natural frequencies o�0n for the clamped plate as obtained from the solution of Eq. (29) with the
orthogonality relation (30) are presented for the axisymmetric modes m ¼ 0, n ¼ 1, 2, 3 (Fig. 4a) and the ratio

o=oð0Þmn, m ¼ 0, 1, 2 and n ¼ 1, 2, 3 in Fig. 4b. The natural frequencies omn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Rha4

q
¼ o�mn are exhibited as a

function of the spin frequency O0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Rha4

q
¼ O�0 (0pO�0p100). For n ¼ 1 the natural frequency increases

slightly above the natural frequency without spin, then decreases until the frequency of spin reaches at
O�0 � 8:9 the frequency of a non-spinning plate again (dashed line). For O�048:9 the natural frequency of the

clamped plate decreases rapidly until it reaches for O�0 � 20:6 the value zero, i.e. buckling of the plate. For

m ¼ 0 and n ¼ 2 the natural frequency o�02 exhibits from O�0 ¼ 0 (the non-spinning value) increasing to

o�02 � 45:6 at a frequency of spin of about O�0 � 25, then decreases again until it reaches the natural frequency

of the non-spinning plate at O�0 � 36:1. At the frequency of spin O�0 � 46:8 the clamped plate is buckling in the

second mode. The third mode m ¼ 0, n ¼ 3 reaches instability at O�0 � 73:3. We conclude from these results

that a spinning clamped plate buckles at O�0 � 20:6, i.e. at a speed of spin of O0 � 20:6 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Ra4h

p
. By

choosing in Ref. [24] the elastic parameters C ¼ K ¼ 1 the results may be applied to the spinning plate with
clamped boundary. This means that the translational and torsional spring stiffness assume both the magnitude
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Fig. 2. Radial (sr=RO2
0a2) and angular (sj=RO2

0a2, dashed line) stress for spinning plate with free boundary (n ¼ 0:3).
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m ¼ 2 (dash-dot line) and n ¼ 1, 2, 3 as a function of the speed of spin O0 for clamped plate (n ¼ 0:3; N ¼ 30).
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infinity. The critical speed parameter exhibits the magnitude of 38.853. In the present treatment it is

O�0;crit ¼ ðO0=
ffiffiffiffiffiffiffiffi
Eh2

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Ra4

p
¼ 20:6. To compare with the value lcrit ¼ O2

0Ra4=Eh2 of the paper by

Maretic [24] we find O�20;crit ¼ 424:36 ¼ 12ð1� n2ÞO2
0Ra4=Eh2, lcrit ¼ 38:866, which exhibits good agreement.

The spinning simply supported plate has been treated in a similar way, observing the eigenvalues lðssÞmn

(Table 1), the eigenfunctions F ðssÞmn (Eq. (35)) and the presented orthogonality conditions. The results of the
natural frequency ratios o=oð0Þmn are presented for the speed of spin O�0 in Fig. 5. We notice that the natural
frequency m ¼ 0, n ¼ 1 is always below that of the non-spinning plate (dashed line) and that buckling occurs
at a quite small value O�0 � 6:6. The fundamental mode m ¼ n ¼ 1 buckles at O�0 � 14:1.

For a spinning free circular plate the natural frequencies as a function of the speed of spin are presented for

the various modes in Fig. 6. For the axisymmetric mode m ¼ 0 the results for o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Ra4h

p
are exhibited in

Fig. 6a for n ¼ 2, 3 and 4. The natural frequency of the plate shows an increase due to the increasing tension

caused by the increasing speed of spin, o�02 ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Ra4h

p
¼ 9:0 to o�02 � 107 (note: n ¼ 1 represents the

translational motion of the plate (see Table 1)).
The second mode frequency o�03 increases in the spin range 0pO�0p50 from o�03 ¼ 38:4 to about

o�03 ¼ 170:2, while the third axisymmetric frequency o�04 increased in that range from o�04 ¼ 87:75 to 256.6. If
we neglect in the treatment of the spinning plate flexural rigidity D ¼ 0, then we have to solve Eq. (39). This
has been performed for a spinning plate of which the slope has been determined in the vicinity of O�0 ¼ 50, a
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Fig. 5. Vibration frequency ratio omn=oð0Þmn as a function of the speed of spin O0 for simply supported plate for m ¼ 0, m ¼ 1 (dashed line),

m ¼ 2 (dash-dot line) and n ¼ 1, 2, 3, (n ¼ 0:3; N ¼ 30).



ARTICLE IN PRESS

0 10 20 30 40 50
0

50

100

150

200

250

300

n = 

4 

3 

2 

n = 1 (Translation) 

0 10 20 30 40 50
0

50

100

150

200

250

300

350

n = 
4 

3 

2 

n = 1 (Rotation) 

0 10 20 30 40 50
0

50

100

150

200

250

n = 
3 

2 

1 

ω
 / 

√ 
(D

 / 
ρh

a4 )
 =

 ω
0n*

Ω0 / √ (D / ρha4) = Ω0
*Ω0 / √ (D / ρha4) = Ω0

*

Ω0 / √ (D / ρha4) = Ω0
*

ω
 / 

√ 
(D

 / 
ρh

a4 )
 =

 ω
1n*

ω
 / 

√ 
(D

 / 
ρh

a4 )
 =

 ω
2n*

(b)(a)

(c)

Fig. 6. Vibration frequency o�mn: (a) axisymmetric (m ¼ 0) for n ¼ 2, 3, 4, (b) asymmetric for m ¼ 1, n ¼ 2, 3, 4 and (c) m ¼ 2, n ¼ 1, 2, 3

as a function of the speed of spin O0 for free plate (n ¼ 0:3; N ¼ 30).

H.F. Bauer, W. Eidel / Journal of Sound and Vibration 300 (2007) 877–895 889



ARTICLE IN PRESS
H.F. Bauer, W. Eidel / Journal of Sound and Vibration 300 (2007) 877–895890
relatively large speed of spin O0. These results exhibiting at O0 ¼ 0 the magnitude o ¼ 0 and at O�0 ¼ 50 the
determined slope, is represented as the dash-dotted straight lines (-.-.). It shows that flexural rigidity Da0
exhibits large deviations of the natural frequencies, depending on the modal number. With increasing radial
mode number n the deviations increase. It also shows that deviations of the natural frequencies are
pronounced for smaller speeds of spin O�0. For the asymmetric mode m ¼ 1 the results are presented in Fig. 6b.
The natural frequency of the spinning free plate is presented for the speed of spin in the range 0pO�0p50. We
notice an increase of the natural frequency with increasing speed of spin. The fundamental mode m ¼ 1, n ¼ 2
starts for O�0 ¼ 0 at o�12 ¼ 20:47 and reaches at O�0 ¼ 50 the value o�12 � 139:6, while the second mode
Table 2

Change of magnitude of modal frequency in the range O�0 ¼ 0 to 50

nnm 0 1 2

1 – – 14.7

2 11.9 6.8 4.9

3 4.4 3.5 2.9

4 2.9 2.6
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Fig. 7. Axisymmetric vibration frequency ratio omn=oð0Þmn as a function of the speed of spin O0 for free plate for m ¼ 0, n ¼ 2, 3, 4,

(n ¼ 0:3; N ¼ 30).
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frequency increases in this range from o�13 ¼ 59:8 to 209.1 and the third mode (m ¼ 1, n ¼ 4) frequency from
o�14 ¼ 118:96 to 303.1. The difference between the natural frequencies at a large magnitude O�0 to that of a
non-spinning plate is largest in the fundamental modes n and is presented in Table 2.

It may be noticed (see Fig. 7) that the first axisymmetric mode (m ¼ 0, n ¼ 2) exhibits in the considered
range 0pO�0p50 the largest increase. It increases its natural frequency nearly 11.9-fold. With the higher modes
the increase diminishes as the radial mode number n increases. For the mode m ¼ 0, n ¼ 3 the natural
frequency increases to a magnitude (o=oð0Þ03 ) 4.4-times of that of the non-spinning free plate. Finally, we notice
that the natural frequency of the mode m ¼ 0, n ¼ 4 at O�0 ¼ 50 is only 2.9 times that of the non-spinning
plate. In Fig. 8 we represent the results for natural frequencies m ¼ 0, n ¼ 2, 3, 4 and m ¼ 1, 2, n ¼ 1, 2, 3 of
the spinning guided circular plate. For increasing speed of spin the natural frequency o=oð0Þ02 decreases and
reaches at O�0 � 22:7 the buckling point of the plate. For the asymmetric mode m ¼ 1 and n ¼ 1 the natural
frequency ratio shows with increasing speed of spin a natural frequency which is always smaller than that of
the non-spinning guided plate. Buckling occurs at about O�0;buckl ¼ 5:3. More detailed representation may be
found in Ref. [23].

The accuracy of the results could be improved by choosing in Eq. (29) the magnitude n ¼ N, i.e. the amount
of homogeneous equations to be evaluated. If we chose the number of equations N ¼ 10 thus solving a
vanishing determinant of degree 10, the lower natural frequencies are for any engineering purposed already
quite adequate. An increase of N to 20 and 30 exhibits hardly any difference any more to these results for the
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modes m ¼ 0, 1, 2 and n ¼ 1, 2. Only for the higher mode n ¼ 3 a small difference appears between N ¼ 10, 20
and 30. For all numerical evaluations we restrict the truncation number N to N ¼ 30. Fig. 9 exhibits the
magnitude of the natural frequencies o�23 for various O�0-values, i.e. O

�
0 ¼ 10 for the range of truncation

numbers 15pNp40. We notice that the magnitude of o�23 exhibits the same value 155.580 in the three-digit
writing, expressing that there is up to three digits no change any more. The point � indicates the value N ¼ 30,
which has been used in the above computations. The results exhibit that for smaller speed of spin O�0 the
difference of the highest mode (m ¼ 2, n ¼ 3) considered in our investigation is very small, yielding a good
acceptance for engineering purposes. This indicates that N ¼ 30 is more than adequate.

Appendix

In the following we investigate the vibration and bucking behaviour of a non-rotating circular plate of
constant thickness under the action of an in-plane force N, to show the quality of the here presented method.
The partial differential equation, describing this system is given by

D54w�N52wþ Rhwtt ¼ 0: ð40Þ
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Using the same notations as in the above treatment

x ¼
r

a
; w ¼ eiot

X1
n¼1

X1
m¼0

W mnðxÞ cosmj; ð41Þ

we obtain ðW mn ¼W Þ

Em½W ; x� ¼W ðIV Þ þ
2

x
W 000 �

2m2 þ 1

x2
W 00 þ

2m2 þ 1

x3
W 0 �

m2ð4�m2Þ

x4
W

�
Rha4

D
o2W �

Na2

D
W 00 þ

1

x
W 0 þ

m2

x2
W

� �
¼ 0.

N40 means tension in the plate, while No0 describes the compression in the plate. We just investigate here
only the case of a clamped plate. With the auxiliary differential equation we obtain

ðl4 � o�2ÞW �
Na2

D
W 00 þ

1

x
W 0 �

m2

x2
W

� �
¼ 0; o�2 ¼

Ra4h

D
o2 ð42Þ

and with the Ritz–Galerkin condition we obtain the system of equationsZ 1

0

X1
n¼1

yAmn ðl
2
� o�2ÞxF nF n � F xF 00nF n þ F 0nF n �

m2

x
FnF n

� �� �
dx ¼ 0; m ¼ 0; 1; 2; . . . . (43)

To exhibit the quality of the above-presented method, some numerical results are presented for a non-spinning
clamped plate with the in-plane force N. In Fig. 10a, we present the investigated results of the natural
frequency o�0n and in Fig. 10b the ratio o=oð0Þmn (m ¼ 0, 1, 2, n ¼ 1, 2, 3), of the non-spinning plate under the
action of the in-plane force F ¼ Na2=D. We notice instability in the region of compression (Fo0) and
increase of the natural frequency for tension (F40). The results also agree with those presented in Leissa [22]
and show that the here presented method is quite adequate for the determination of the natural frequencies of
spinning circular plates. The value o=oð0Þmn represents the frequency ratio, in which oð0Þmn is the natural frequency
of the plate without in-plane forces (Fig. 10b) (N ¼ 0). It may be noticed that we used the same number of
equations, as expressed by N ¼ 30. The accuracy is very good, as we may find from the results given in Leissa
[22]. More detailed representation may be found in Ref. [23].

The above method may also be applied to plates of annular geometry [25,26]. Assuming the same
assumption that for small deflections of the plate the stress relation is unaffected during transverse vibrations,
the planar stress relations may be obtained with the above Eqs. (1)–(3) yielding with Eqs. (7) and (8) the two
coupled Euler equations (7) which exhibit for the radial and angular stress

sr ¼ Aþ
B

r2
�

3þ n
8

RO2
0r

2; sj ¼ A�
B

r2
�

1þ 3n
8

RO2
0r2 ð44Þ

and the radial displacement

u ¼ A�
B

r2
�

1þ n
8

RO2
0r

2; ð45Þ

where A and B are integration constants to be determined from the boundary conditions at r ¼ a and b, the
radius of inner boundary. There will be 16 different boundary combinations. Observing the abbreviations c
(clamped), ss (simply supported), f (free), and g (guided), we distinguish the combinations: c–c, c–ss, c–f, c–g,
ss–c, f–c, g–c, ss–ss, ss–g, g–ss, g–g, f–g, f–ss, ss–f, g–f and f–f. Depending on the conditions considered we are
able to determine the integration constants A and B, where we have to observe for the cases the vanishing of
two of the values sr, sj or u from Section 2 at the boundaries r ¼ a; b. Introducing these results for the
appropriate boundaries of the annular plate into Eq. (16)—observing the inclusion of the Bessel and modified
Bessel functions of the second kind Y m and Km, respectively—and applying the above procedure shall yield
vibration frequencies and instabilities of any annular plate.
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